75 research outputs found

    Automatic real-time interpolation of radiation hazards: prototype and system architecture considerations

    Get PDF
    Detecting and monitoring the development of radioactive releases in the atmosphere is important. In many European countries monitoring networks have been established to perform this task. In the Netherlands the National Radioactivity Monitoring network (NRM) was installed. Currently, point maps are used to interpret the data from the NRM. Automatically generating maps in realtime would improve the interpretation of the data by giving the user a clear overview of the present radiological situation and provide an estimate of the radioactivity level at unmeasured locations. In this paper we present a prototype system that automatically generates real-time maps of radioactivity levels and presents results in an interoperable way through a Web Map Service. The system defines a first step towards a emergency management system and is suited primarily for data without large outliers. The automatic interpolation is done using universal kriging in combination with an automatic variogram fitting procedure. The focus is on mathematical and operational issues and on architectural considerations on how to improve the interoperability and portability of the prototype system

    Comparing adaptive and fixed bandwidth-based kernel density estimates in spatial cancer epidemiology

    Full text link
    Background: Monitoring spatial disease risk (e.g. identifying risk areas) is of great relevance in public health research, especially in cancer epidemiology. A common strategy uses case-control studies and estimates a spatial relative risk function (sRRF) via kernel density estimation (KDE). This study was set up to evaluate the sRRF estimation methods, comparing fixed with adaptive bandwidth-based KDE, and how they were able to detect ‘risk areas’ with case data from a population-based cancer registry. Methods: The sRRF were estimated within a defined area, using locational information on incident cancer cases and on a spatial sample of controls, drawn from a high-resolution population grid recognized as underestimating the resident population in urban centers. The spatial extensions of these areas with underestimated resident population were quantified with population reference data and used in this study as ‘true risk areas’. Sensitivity and specificity analyses were conducted by spatial overlay of the ‘true risk areas’ and the significant (α=.05) p-contour lines obtained from the sRRF. Results: We observed that the fixed bandwidth-based sRRF was distinguished by a conservative behavior in identifying these urban ‘risk areas’, that is, a reduced sensitivity but increased specificity due to oversmoothing as compared to the adaptive risk estimator. In contrast, the latter appeared more competitive through variance stabilization, resulting in a higher sensitivity, while the specificity was equal as compared to the fixed risk estimator. Halving the originally determined bandwidths led to a simultaneous improvement of sensitivity and specificity of the adaptive sRRF, while the specificity was reduced for the fixed estimator. Conclusion: The fixed risk estimator contrasts with an oversmoothing tendency in urban areas, while overestimating the risk in rural areas. The use of an adaptive bandwidth regime attenuated this pattern, but led in general to a higher false positive rate, because, in our study design, the majority of true risk areas were located in urban areas. However, there is a strong need for further optimizing the bandwidth selection methods, especially for the adaptive sRRF.<br

    Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Get PDF
    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10–fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval, resampling and filtering of MODIS images—are anticipated

    Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study

    Full text link
    Background: There is a rising public and political demand for prospective cancer cluster monitoring. But there is little empirical evidence on the performance of established cluster detection tests under conditions of small and heterogeneous sample sizes and varying spatial scales, such as are the case for most existing population-based cancer registries. Therefore this simulation study aims to evaluate different cluster detection methods, implemented in the open soure environment R, in their ability to identify clusters of lung cancer using real-life data from an epidemiological cancer registry in Germany. Methods: Risk surfaces were constructed with two different spatial cluster types, representing a relative risk of RR = 2.0 or of RR = 4.0, in relation to the overall background incidence of lung cancer, separately for men and women. Lung cancer cases were sampled from this risk surface as geocodes using an inhomogeneous Poisson process. The realisations of the cancer cases were analysed within small spatial (census tracts, N = 1983) and within aggregated large spatial scales (communities, N = 78). Subsequently, they were submitted to the cluster detection methods. The test accuracy for cluster location was determined in terms of detection rates (DR), false-positive (FP) rates and positive predictive values. The Bayesian smoothing models were evaluated using ROC curves. Results: With moderate risk increase (RR = 2.0), local cluster tests showed better DR (for both spatial aggregation scales > 0.90) and lower FP rates (both < 0.05) than the Bayesian smoothing methods. When the cluster RR was raised four-fold, the local cluster tests showed better DR with lower FPs only for the small spatial scale. At a large spatial scale, the Bayesian smoothing methods, especially those implementing a spatial neighbourhood, showed a substantially lower FP rate than the cluster tests. However, the risk increases at this scale were mostly diluted by data aggregation. Conclusion: High resolution spatial scales seem more appropriate as data base for cancer cluster testing and monitoring than the commonly used aggregated scales. We suggest the development of a two-stage approach that combines methods with high detection rates as a first-line screening with methods of higher predictive ability at the second stage.<br

    MODIS time series contribution for the estimation of nutritional properties of alpine grassland

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in European Journal of Remote Sensing on 17th February 2017, available online: https://doi.org/10.5721/EuJRS20164936Despite the Normalised Difference Vegetation Index (NDVI) has been used to make predictions on forage quality, its relationship with bromatological field data has not been widely tested. This relationship was investigated in alpine grasslands of the Gran Paradiso National Park (Italian Alps). Predictive models were built using remotely sensed derived variables (NDVI and phenological information computed from MODIS) in combination with geo-morphometric data as predictors of measured biomass, crude protein, fibre and fibre digestibility, obtained from 142 grass samples collected within 19 experimental plots every two weeks during the whole 2012 growing season. The models were both cross-validated and validated on an independent dataset (112 samples collected during 2013). A good predictability ability was found for the estimation of most of the bromatological measures, with a considerable relative importance of remotely sensed derived predictors; instead, a direct use of NDVI values as a proxy of bromatological variables appeared not to be supported
    • …
    corecore